The Behavior of mainPanel: Resolving Nested ObserveEvent Issues in RShiny

RShiny: Understanding Main Panel Behavior with Input

In this post, we will delve into a Stack Overflow question regarding the behavior of the mainPanel in an RShiny application. The issue arises when using numeric input within the sidebar panel and its impact on the parity of the input $n. We’ll explore the provided code, identify the problem, and provide solutions to ensure predictable behavior.

Introduction

RShiny is a popular framework for building interactive web applications with Shiny, R’s data visualization and statistical computing system. When creating these applications, developers must consider various aspects, including user interaction, data handling, and visualization. In this post, we’ll examine a specific issue related to the mainPanel behavior when using numeric input within the sidebar panel.

The Problem

The provided code is as follows:

require(png)
require(shiny)
require(shinyjs)

########## PRE-PROCESSING
Nsub <- 5
Nimg <- 10
nvar <- 112*92
N <- Nsub * Nimg

#stocker noms fichiers et images
init <- function(){
  listFiles <- list()
  listDataMat <- list()
  excluded <- list()
  
  for( sub in 1:Nsub ){
    listLabel <- c()
    DataMat <- matrix(nrow=Nimg,ncol=nvar)
    for( img in 1:Nimg ) {
      fname <-  paste("www/s",sub,"_",img,".png",sep="")
      listLabel <- c(listLabel,fname)
      d <- readPNG(fname)
      DataMat[img,] <- matrix(d,ncol=nvar)
    }
    listFiles[[sub]] <- listLabel
    listDataMat[[sub]] <- DataMat
    excluded[[sub]] <- rep(FALSE,10)
  }
  
  list(listFiles,listDataMat,excluded)
}

lists <- init()
listFiles <- lists[[1]]
listDataMat <- lists[[2]]
excluded <- lists[[3]] #noms fichier exclus de database // %in%
remove(lists)


############ HELPER FUNC
#afficher images d'une classe
dispImgs <- function(variable,ind){
  
  if(variable>=1){
    DataMat <- listDataMat[[variable]]
  }else{
    DataMat <- listDataMat[["0"]]
  }
  result <- list()
  outfile <- tempfile(fileext = ".png")
  
  sample <- matrix(DataMat[ind,], nrow = 112, ncol = 92)
  writePNG(sample, target = outfile)
  im <- list(src = outfile,
             contentType = "image/png",
             alt = "Normalement, on devrait voir une photo",
             width = 92, 
             height = 112
  )
  im
}


###########SERVER
server <- function(input,output,session){
  excluded <- reactiveValues(ls = excluded)
  
  # vals <- reactiveValues()
  # vals$n_sample <- 10
  # vals$n_rows <- *
  # vals$last_row <- n_sample%%5
  
  observeEvent(input$n,{
    n_sample <- ifelse(input$n==0,nrow(listDataMat[["0"]]),nrow(listDataMat[[input$n]]))
    n_rows <- round(n_sample/5)
    last_row <- n_sample%%5
    
    #creating event listener
    lapply(
      X = 1:n_sample,
      FUN = function(i){
        observeEvent(input[[paste0("out",i)]], {
          excluded$ls[[input$n]][i] <- !excluded$ls[[input$n]][i]
          updateActionButton(session, paste0("out",i),
                             label = ifelse(excluded$ls[[input$n]][i],"Inclure","Exclure"))
          print(excluded$ls[[input$n]])
        })
      }
    )
  })
  
  img_widget <- function(i) {
    if(input$n==0){
      column(2,
             renderImage({
               dispImgs(input$n,i)
             },outputArgs = c(height="200px")
             )
      )
      
    }else{
      column(2,
             actionButton(paste0("out",i), label = ifelse(excluded$ls[[input$n]][i],"Inclure","Exclure")),
             renderImage({
               dispImgs(input$n,i)
             }, 
             outputArgs = c(height="200px")
             )
      )
      
    }
    
  }
  
  output$mainPanel <- renderUI({
    mainPanel(
      h2(paste("Les 10 photos de l'individu", input$n)),
      # if(n_rows!=0){
      #   for(i in 1:n_rows){
      #     fluidRow(
      #       width=10,
      #       lapply(
      #         X = 1+5*(i-1):5*i,
      #         FUN = img_widget
      #       )
      #     )
      #   }
      # }
      # if(last_row!=0){
      #   fluidRow(
      #     width=10,
      #     lapply(
      #       X = 1+5*(n_rows-1):5*(n_rows-1)+last_row,
      #       FUN = img_widget
      #     )
      #   )
      # }
      fluidRow(
        width=10,
        lapply(
          X = 1:5,
          FUN = img_widget
        )
      ),
      fluidRow(
        width=10,
        lapply(
          X = 6:10,
          FUN = img_widget
        )
      )
    )
    
  })
  
}
</code></pre>

```markdown
require(png)
require(shiny)

######### HELPER FUNC


########## UI
ui &lt;- fluidPage(
  
  # Titre
  headerPanel("Banque de photos pour reconnaissance faciale"),
  sidebarLayout(
    sidebarPanel(
      numericInput('n', "Numéro de l'individu à afficher", 1, min = 0, max = 40, step = 1)
    ),
  uiOutput("mainPanel")
  )
)
</code></pre>

### Problem Analysis

The problem arises from the nested `observeEvent` functions. When triggering the first `input$n`, it updates the `n_sample` variable and creates an event listener for all subsequent inputs of type `out`. However, when triggering any `input$outN` button, it launches two separate events instead of one.

### Solution

To resolve this issue, we need to redesign the event structure. We'll use a single `observeEvent` function that updates the state and triggers the necessary actions.

```markdown
observeEvent(input$n,{
  n_sample &lt;- ifelse(input$n==0,nrow(listDataMat[["0"]]),nrow(listDataMat[[input$n]]))
  
  # Update event listener
  lapply(
    X = 1:n_sample,
    FUN = function(i){
      observeEvent(input[[paste0("out",i)]], {
        excluded$ls[[input$n]][i] &lt;- !excluded$ls[[input$n]][i]
        updateActionButton(session, paste0("out",i),
                           label = ifelse(excluded$ls[[input$n]][i],"Inclure","Exclure"))
      })
    }
  )
})

Explanation

By moving the event listener creation inside the main observeEvent function, we ensure that each input triggers a single update of the state. This resolves the nested event issue and provides predictable behavior.

Conclusion

The behavior of the mainPanel in RShiny applications is influenced by various factors, including user interaction, data handling, and visualization. In this post, we explored an issue related to nested observeEvent functions and provided a solution using a single observeEvent function that updates the state and triggers necessary actions.

Additional Considerations

When designing interactive web applications with Shiny, it’s essential to consider various aspects of user interaction, data handling, and visualization. Some additional considerations include:

  • Use reactive values to update the application state.
  • Utilize observeEvent functions to trigger events in response to input changes.
  • Optimize event listeners using techniques like lazy loading or memoization.

By considering these factors and implementing best practices, you can build reliable and efficient Shiny applications that provide an excellent user experience.


Last modified on 2024-03-20